

Should the Model-Based Enterprise Be My Enterprise?

John Sillari

Chief Technologist, Dayton T. Brown, Inc. jsillari@dtb.com

S1000D User Forum • Vienna, Austria 18 September 2013

Agenda

Today's Topics

- What is Model-Based Enterprise?
- Why use it?
- MBE Experience Case Studies
- Results
- Preparing the Enterprise
- Education
- Contingencies
- Recommendations

What is Model-Based Enterprise?

Model-Based Enterprise

- An attempt to share the Model Based Definition across the enterprise
- Fully integrated and collaborative environment
- A process for reusing the 3D CAD Model
- Based on fully annotated 3D model ("Annotated Master Model")
- Compliant with ASME Y14.41-2012
- 3D model a single master source for obtaining product definition data

Model-Based Definition

Sharing Model Data

- Why do it?
 - Promotes efficient deployment of product info in all phases of the product's lifecycle
 - Enables an authoritative source of engineering information to be communicated to all stakeholders
 - Automates reuse of product information for downstream customers
 - Standardizes internal processes
- Who uses it?
 - OEMs
 - Suppliers
 - Defense organizations

Model-Based Definition

Solid Model Schema

- Provides an infrastructure to promote consistency in engineering data
- Required for the creation and subsequent presentation of data
- MBD Schema based on ASME Y14.41-2012 Digital Product Data Practices
- Foundation for design development efforts and additional guidance to the CAD user
- Provides a complete product definition via annotations
- Organizes and structures model data for viewing by the downstream user

MBE Within the Enterprise

Integrated Product Life Cycle Support

MBE Information Flow

3D Model Data Use and Reuse

Model Data Users

Downstream Users

- Provide all design and detailed information, including design intent, in the model
- Data sharing relies on consistent tool usage
- Consistent data definition essential for extraction and reuse

Common engineering practices required to access and re-use model data

appropriately

ASME Y14.41-2012 [Revision of ASME Y14.41-2003 (R2008)]

Digital Product Definition Data Practices

Engineering Drawing and Related Documentation Practices

MBE Expectations

Promises Unfulfilled

- Early adopters pay a higher price
- Management-driven decision allured by promises
- Over-reliance on technology, not people
- Poor communication between stovepipes
- Process disconnect between sub-tier suppliers and OEM
- Consequences are unpredictable and expensive to correct

Let's examine some case studies and see what went wrong and what went right...

MBE Experience – Case Studies

Mixed Results

Program 1

- Aerospace manufacturer
- Long term relationship
- Established workflow
- Good communication
- Product development ongoing

Program 2

- Land Vehicle
- Sub-tier supplier / integrator
- Relatively new customer
- New workflows
- Add-on to OEM end item

Program 3

- Aircraft manufacturer
- New customer
- New workflow
- Product under development

Geometry Errors

- Parts found outside of major assemblies
- Inconsistent grouping or association with NHA
- Geometry not annotated or incorrect
- Broken relationships between parts and assemblies
- Over-simplified geometry
- Scaling issues

Origin point shifted or missing

Part / assy not where it's supposed to be

Coordinates skewed

Part Information Goes Awry...

- Part numbers missing
- Part numbers do not match eBOM
- Nomenclature missing
- Nomenclature not in eBOM
- Part information location inconsistent
- Part information not updated with model
- Model data assumes live connection to PLM system
 - Not true for vendors and suppliers
 - Corporate IT prohibitions

Model Performance & Process Issues...

Model software performance issues

- Lengthy opening times
- Extraction slow and cumbersome
- Files too big

Change process issues

- Model updated weekly
- All change data in the model
- No method to indicate which data changed

Overall process too slow and costly

- Model data consumers complained about speed and performance
- Consumers needed newer, bigger, faster computers

Proprietary data rights

- Model translations to protect data right corrupted data
- Over-zealous intellectual property (IP) obfuscation

MBE Result

At the end of the day...

- We're good people and we all try to do a good job
- We're professional and considerate of others' needs
- We're all focused on making the best possible decisions
- Product design groups and engineers strive for excellence

But...

Stakeholders lost faith in model's capability as a reliable source of information

Outcome Assessment

Poor result because of...

- MBE is very attractive to management
 - Technology focused tools vendors provide "out-of-box" solutions
 - Makes a lot of sense single-sourced data are good
 - Has real cost benefits greater efficiency and productivity

- Enterprise initiatives often embrace technology at the cost of culture
- Engineering is becoming a social enterprise
- Adoptions requires cultural and technological change
 - Un-met expectations at many levels
- Product design and development cannot take place in a vacuum
 - Timing issues
 - Long lead process
 - New technology insertion
 - Lack of standards enforcement
 - Poor or missing QA

Preparing the Enterprise

Commit Stakeholders

Who does it affect?

- Engineering
- Manufacturing
- Technical information development
- Training
- Support
- Purchasing
- Customers
- Partners
- Vendors

Project planning

- Cross-organizational and extra-organizational
- Corral multiple stakeholders for input
- Best done iteratively (multiple IPRs)
- Ensure all needs are met

Education

Sharing is Knowledge

Knowledge is key for MBE

- Ignorance of how MBE affects your function is dangerous
- Make information about MBE available to all
- Publish the MBE schema to all users
- Share common terminology, use a single nomenclature vocabulary

All stakeholders need to know something about MBE

- Engineers: product definition conventions
- Managers: timescales for effort, resource requirements
- Writers and training: where to find information in the model
- IT: modeling and collaboration tools
- Software developers: customer requirements for lightweight 3D viewers
- Vendors and suppliers: know what to expect (look and feel, review), hard and soft requirements

Customers and end users need training

- Manage their expectations
- Mitigate the impact of change on their organization
- Use outside resources wisely educate

Contingencies

What happens when things go south...

MBE is like chess

- Requires thinking out a long-term strategy
- Requires contingency planning
- And the clock is running...

Anticipate problems beforehand

- Consistent modeling behavior = best practices, conventions, informal training
- Tool knowledge = formal training
- MBE knowledge = get stakeholders educated
- IT issues = get IT on it, and get them educated
- Extra-enterprise consumers = must have vendor conference, coordinate solution with them

Unplanned events happen

- Resource outages: need replacements fast
- IT complications: need help for other sources (DBA, firewalls, etc.)
- Design changes cause scope creep: sort priorities, get management consensus

Recommendations

Vendor and Supplier Perspective

- Don't throw the model over the wall
- Involve vendors and suppliers early in the model definition process
- Educate vendors and suppliers about MBE
- Be receptive to vendors' and suppliers' needs / limitations
- Find common ground to work through issues
- Align technologies and adjust expectations accordingly
- Communicate and reach consensus
- Identify data dependencies, especially where hidden or assumed
- Prevent data disconnects and provide workarounds when encountered

Take Away

MBE Champion

MBE is like a high-performance, exactingly-tuned machine:

When all the parts work together, supported by an expert team,

Questions?

Thank you